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We have investigated an optimum form of the modified icosahedral grid that is
generated by applying the spring dynamics to the standard icosahedral grid sys-
tem. The spring dynamics can generate a more homogeneous grid system than the
standard icosahedral grid system by tuning the natural spring lenght: as the natural
spring length becomes longer, the ratio of maximum grid interval to minimum one
becomes closer to unit. When the natural spring length is larger than a critical value,
however, the spring dynamic system does not have a stable equilibrium. By setting
the natural spring length to be the marginally critical value, we can obtain the most
homogeneous grid system, which is most efficient in terms of the CFL condition.
We have analyzed eigenmodes involved in the initial error of the geostrophic balance
problem [test case 2 of D. L. Williamson et al. (1992, J. Comput. Phys. 102, 211)].
Since the balance state in the discrete system differs slightly from the exact solution
of the analytic system, the initial error field includes both the gravity wave mode and
the Rossby wave mode. As the results of the analysis are based on Hough harmonics
decompositions, we detected Rossby and gravity wave modes with zonal wavenum-
ber 5, which are asymmetric against the equator. These errors are associated with
icosahedral grid structure. The symmetric gravity wave mode with zonal wavenum-
ber 0 also appears in the error field. To clarify the evolution of Rossby waves, we
introduce divergence damping to reduce the gravity wave mode. From the simulated
results of the geostrophic problem with various grid systems, we found that the spu-
riously generated Rossby wave mode is eliminated most effectively when the most
homogeneously distributed grid system is used. It is therefore, concluded that the
most homogeneous grid system is the best choice from the viewpoint of numerical
accuracy as well as computational efficiency. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Global climate research requires faster and more accurate solutions of the geophysical
dynamics on the spherical geometry. The spectral transform method based on spherical
harmonics has been used to solve the dynamical part in the atmospheric GCM (general
circulation model) because of its high accuracy. The computational cost of the spectral
transform method, however, becomes extremely high as the resolution increases: the com-
putational operations are O(n3) complex, where n is the truncation number. This is because
of the lack of an algorithm for fast Legendre transformation comparable to FFT (fast fourier
transformation), although alternative approaches such as the double FFT are being devel-
oped [1, 2]. In addition, on massively parallel computers with distributed memories, the
spectral transform method has a serious problem: the spectral transform method requires
extensive data transfer between computer nodes. For these reasons, it is widely believed
that the next generation atmospheric GCM should employ the grid method rather than the
spectral transform method.

One may employ the simple latitude–longitude grid system as the grid method. How-
ever, the latitude–longitude grid method also has another computational problem at high
resolutions. In this grid system, the grid spacing near the poles becomes very small as the
resolution becomes higher. This causes a very severe limitation on the time interval for
advection or the wave-propagation problem to satisfy the CFL (Courant–Friedrich–Lewy)
condition [3]. We call this problem the pole problem.

The icosahedral grid method [4, 5] is an attractive alternative to the spectral trans-
form method and the simple latitude–longitude gird method. This grid method has ad-
vantages over the latitude–longitude grid method, because it avoids the pole problem
by the homogeneity of grid interval. In addition, it has a relatively low computational
cost against the spectral transform method at high resolutions. Thus, the icosahedral grid
method has high potential for the next generation GCM. Actually, the icosahedral grid
has been adopted in a recent climate model [6] and a numerical weather prediction mode
[7, 8].

Following Sadourny et al. [4] and Williamson [5], who proposed the use of icosahedron
as a starting frame for grid generation, many researchers have developed geophysical models
using this idea: the barotropic equation models [4, 5, 9], the shallow water equations models
[10–15], and the primitive equations models [6–8, 16–18]. In general, finer grid systems are
constructed by the recursive division technique as follows. Each side of the original icosa-
hedron whose vertices are on a sphere is projected onto the surface of the sphere. By
connecting the midpoints of the geodesic arcs, four subtriangles are generated from each
of the spherical triangles. By iterating this procedure, the grid refinement proceeds.

This recursive grid generation method is straightforward. However, in terms of the nu-
merical accuracy, there exists a problem with the combination with the spatial discretization.
Heikes and Randall [12] modified the grid system by twisting the icosahedral grid after the
first division to obtain the geometrical symmetry against the equator. After the completion
of refinement, they further modified the grid system to minimize the error of numerical
differential operators [13]. Tomita et al. [19] proposed another grid modification by two
processes after generating the grid system by the recursive technique. In the first process,
neighboring grid points are connected by springs with dampers. Under an appropriate ini-
tial condition, grid points are moved until the spring dynamical system calms down to
equilibrium. The obtained grid system by this modification dramatically reduces the grid
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noise in the integration of the shallow water equations. We call this modified grid sys-
tem the spring grid system. In the second process, the grid points thus determined are
moved to the gravitational centers of control volumes. This modification guarantees the
second-order accuracy of numerical differential operators at all the grid points. We call
this modification the gravitational-centered relocation. In the previous paper [19], the au-
thors showed the advantage of the spring grid system with gravitational-centered relocation
over the standard grid system by performing the standard test suites of the shallow water
equations [20].

Although the modified icosahedral gird system used in [19] provides high numerical
accuracy, there is a disadvantage in terms of the computational efficiency; that is, the ratio
of the maximum grid interval to the minimum one in the spring grid system is slightly
larger than that in the standard grid system. It is a side effect of the application of the spring
dynamics.

The main purpose of this paper is to optimize the spring grid system from the viewpoints
of both computational efficiency and numerical accuracy. We may say from the former
viewpoint that the best grid system is one in which the ratio of the maximum grid interval
to the minimum one is closest to unit; if this grid system is used, we can choose the largest
time interval that satisfies the CFL condition. However, whether this grid system has the
best numerical accuracy remains to be determined. To examine the numerical accuracy, we
investigate the evolution of initial error in detail using a series of spring grid system. Based
on these results, we conclude that the most homogeneously distributed grid system has the
best performance of the numerical accuracy.

The structure of this paper is as follows. In Section 2, grid modification using the spring
dynamics is described. Although the spring dynamics was formulated in the previous paper
[19], we derive it again in more detail for the sake of subsequent discussion. We also
discuss the characteristics of grid systems obtained using the spring dynamics and varying
the natural spring length as a parameter. In Section 3, the governing equations and our
numerical scheme are described. The analysis method of error field based on the Hough
harmonics decomposition is also described. In Section 4, we perform the zonal geostrophic
flow problem, which is similar to test case 2 in the standard test suite [20]. The main purpose
of this section is a detailed analysis of errors that lie on the icosahedral grid system. Finally,
a discussion based on the analysis of the best grid system and concluding remarks are given
in Section 5.

2. GRID CONSTRUCTION

2.1. Generation by Spring Dynamics

In this section, we describe generation of the grid system with spring dynamics. Prior to
the application of the spring dynamics, we need to construct the standard grid system, which
is refined by the same procedure as that of Stuhne and Peltier [9, 14], that is, the recursive
division technique. In this paper, the grid resolution obtained by mth dividing operations is
called “glevel-m.”

The grid location is modified in the following manner. We assume that each grid point
has a mass M and that neighboring two grid points are connected by a spring with spring
constant k as shown in Fig. 1. We also introduce a damping force to obtain an equilibrium
solution. The damping force is proportional to the velocity of motion of the grid point with
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FIG. 1. Schematic figure of spring dynamics on a grid system.

a damping coefficient α. The equation of motion of mass at the point P0 is described as

M
dw0

dt
=

n∑
i=1

k(di − d̄ )ei − αw0, (1)

dr0

dt
= w0, (2)

where di and d̄ are the length of are P0 Pi and the natural spring length, respectively, ei is
the unit vector in the direction from P0 to Pi on the tangential plain at P0, w0 is the velocity
vector at P0, r0 is the position vector of P0, and n is the number of surrounding mass points
interacting with the mass point P0. In the icosahedral grid configuration, n equals 6 except
for the 12 singular points, where n equals 5. When the dynamical system calms down to a
static balance with w0 = 0 and dw0/dt = 0, the following relation is satisfied:

n∑
i=1

(di − d̄ )ei = 0. (3)

Thus, the grid configuration depends only on the tuning parameter d̄.
The parameter d̄ should be related to a characteristic length of grid interval, which is

expressed using the grid division level m as

λ = 2πa

10 × 2m−1
, (4)

where a is the radius of sphere; λ represents a mean distance between neighboring grid
points since the numerator and denominator on R.H.S. in Eq. (4) are the length of the
equator and the number of grid points on the equator, respectively. We choose d̄ in the form

d̄ = βλ, (5)

where β is a nondimensional parameter. We use β instead of d̄ as the tuning parameter.
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Starting from an initial condition of grid points, Eqs. (1) and (2) are numerically solved
until the following criterion is satisfied at all the grid points,

∣∣∣∣∣
n∑

i=1

(di − d̄)ei

∣∣∣∣∣
/

λ < ε, (6)

where ε is a small nondimensional number. In all the calculations in this study, we set
ε = 1.0 × 10−4. We do not need to use high-order temporal schemes to solve Eqs. (1) and (2),
because our interest is only in the stationary state. We use the Euler method as the temporal
scheme. After the stationary state is obtained, a control volume at each grid point is defined as
a hexagon G1 − G6 as shown in Fig. 1 by connecting the gravitational centers of triangular
elements. Note that the shape of hexagonal control volumes is not a perfect hexagon.
However, the control volumes corresponding to the vertices of the original icosahedron
are perfect pentagons. Finally, the gravitational-centered relocation [19] is applied to all
the grid points: the grid points are moved to the gravitational centers of control volumes.
This modification is necessary to guarantee the second-order accuracy of our numerical
differential operators, which are described in the next section. Its mathematical proof is
given in our previous paper [19]. Furthermore, it is important to note that the gravitational-
centered relocation does not change the shape and the size of control volumes, but changes
only the location of grid points. In the previous paper [19], this grid system was called the
SPR-GC grid, and the grid system modified only by the gravitational-centered relocation
was called the STD-GC grid. In this paper, omitting the symbol GC for simplicity, we call
these grid systems the SPR grid and the STD grid, respectively.

We construct grid systems for glevel-5, 6, and 7 with increasing β from 0.0 to 1.2. The
initial condition for each β is given in a way similar to the multigrid technique as follows.
First, the STD grid with glevel-5 is used as the initial condition for the construction of the SPR
grid with glevel-5. After the SPR grid at this resolution for each of βs is obtained by spring
dynamics, it is divided only once by the grid division method to obtain an initial condition
for glevel-6. We can obtain the SPR grid of glevel-6 for each β by solving Eqs. (1) and (2).
The initial conditions for glevel-7 are determined in the same manner using the SPR grids
with glevel-6. In the cases of the higher resolution with glevel-6 and 7, less computational
time is required with this method than with a method where the STD grid with the same
glevel is given as the initial condition. This is because the disturbance of a relatively large
wavelength, whose damping time is larger than that of a small wavelength, is eliminated
in advance by using the previous equilibrium solution of the coarser resolution. We should
note that the 12 vertices of the original icosahedron do not need to be moved because the
locations of these points in the initial condition are the same as those in the equilibrium state.

2.2. Characteristics of Grid Systems

Figures 2a and 2b show the structures of glevel-5 grid systems for the STD grid and
the SPR grid with β = 0.4. Note that this value of β was used in the previous paper [19].
Figures 2a and 2b show that the grid points near the vertices of the original icosahedron in
the SPR grid are denser than those in the STD grid.

As a characteristic length of the grid interval, we define l by root of area of control volume.
Figure 3 shows the scatter plot of l against sin(φ) for the STD grid and the SPR grid with
β = 0.4, where φ is latitude. The values of l in Fig. 3 are scaled by using the radius of the
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FIG. 2. (a) Grid structure of the STD grid with glevel-5. (b) Grid structure of the SPR grid (β = 0.4) with
glevel-5. (c) Grid structure of the SPR grid (β = 1.2) with glevel-5.

earth. The maximum value of l, which is indicated at the centers of the major triangles in
the original icosahedron, is slightly reduced by a factor of 1.05 with the application of the
spring dynamics. On the other hand, the minimum value of l at the singular points is much
reduced by a factor of 1.44. Consequently, the ratio of lmax to lmin becomes higher from 1.34
to 1.82. Thus, the ratio of the maximum grid interval to the minimum one is changed by
grid modification by spring dynamics.

The ratio lmax/ lmin in the SPR grid depends on both glevel and β. In contrast, the value of
lmax/ lmin in the STD grid converges to 1.34 as the glevel increases [19]. We call this value
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FIG. 2—Continued

FIG. 3. (a) Scatter plot of l and sin(φ) for the STD grid with glevel-5, where φ is latitude. (b) Scatter plot of
l and sin(φ) for the SPR grid (β = 0.4) with glevel-5.
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FIG. 4. Dependency of ratio of the maximum grid interval to the minimum one on β and glevel.

the STD grid convergence level. Figure 4 shows the plot of lmax/ lmin against β for glevel-5,
6, and 7. The value of lmax/ lmin is reduced as β increases. If β < 1.1, the value of lmax/ lmin

exceeds the STD grid convergence level. We can also find that the value of lmax/ lmin at the
same β increases as the glevel increases. This tendency intensifies as β becomes smaller.

As shown in Fig. 4, if β = 1.2, the values of lmax/ lmin for different glevels are almost the
same and enough below the STD grid convergence level. From the viewpoint of computa-
tional efficiency, the value of β = 1.2 is the best choice of the values used (0.0 ≤ β ≤ 1.2),
because this configuration provides the most homogeneous grid as shown in Fig. 2c. The
numerical accuracy of the shallow water equations using this grid system is discussed in
Section 4.

We also investigate the dependency of the shape of control volume on β and glevel. θi

denotes the angle of control volume at the vertex Gi (i = 1 ∼ 5, 6) and the quantity q is
defined for each of control volumes as

q = max(θi )

min(θi )
− 1, (7)

where max and min denote the maximum and minimum values in six or five vertices of
a control volume. Note that the value of q vanishes when the control volume is a perfect
hexagon or pentagon.

The maximum value of q in all control volumes is denoted by qmax. Figure 5 shows the
plot of qmax against β for glevel-5, 6, and 7. We find that the value of qmax is the STD grid
converges to 0.14 as the glevel increases. We call this value the STD grid convergence level
for qmax. For each glevel, qmax has a minimum value around β = 0.4. When β > 0.4, qmax

increases monotonically and it has a maximum value at β = 1.2. However, the maximum
value is almost the same degree as the STD grid convergence level.

If β exceeds the value of 1.2, we find that it is difficult to obtain an equilibrium of the
dynamical system. Actually, monitoring the maximum value of the left-hand side of Eq. (6),
it becomes oscillatory in time. This fact can be explained as follows. The sum of all the
potential energy of the springs has a minimum value when the spring system is in the
equilibrium state. In addition, any local system that is defined as six or five springs around
a given mass point must be in stable equilibrium; that is, the sum of potential energy of
these springs around the mass point should be minimum. If β is sufficiently small, all of the
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FIG. 5. Dependency of qmax on β and glevel.

local potential energy is minimum at the equilibrium state, where all of the spring tensions
are positive. If β becomes larger, some of the spring tensions might be negative so that the
equilibrium state is unstable.

Let us consider a simple local system that contains six springs on a flat plane. One end
of the spring is connected at a mass point (x, y) and the other end is fixed on the unit circle
at

(
xk

yk

)
=

(
cos(nπ/3)

sin(nπ/3)

)
n = 1, 2, . . . , 6. (8)

In this situation, any length between neighboring mass points equals to unit. We define the
natural spring lenght by β ′. The potential energy of this system is written as a function of
the location of the mass point (x, y):

PE(x, y) = 1

2
k

6∑
i=1

(

√
(x − xk)2 + (y − yk)

2 − β ′)2. (9)

Figure 6 shows the distributions of PE for different values of β ′. When β ′ is small
(Figs. 6a and 6b), the origin is the unique minimum of PE and thus the equilibrium state is
stable. If β ′ becomes large and exceeds a critical value (�1.5), six other minimum points
of PE appear around the unit circle (Fig. 6c). Although the equilibrium state at the origin
is still stable, it becomes difficult for the spring dynamics to find the minimum of PE at
the origin (Fig. 6d). When β ′ is at another critical value (�2.0), the equilibrium state at
the origin is neutral (Fig. 6e). If β ′ exceeds the second critical value, the origin is not a
minimum point of PE but a maximum point and thus the equilibrium at the origin is unstable
(Fig. 6f).

Focusing again on the grid generation, the spring dynamics with β = 1.2 converges to a
balance state, so that all local systems in the SPR grid system with β = 1.2 should be stable
as shown in Fig. 6b or 6c. On the other hand, for β higher than 1.2, several local spring
dynamics cannot find the minimum of PE at the center of hexagon as shown in Fig. 6d or
the centers themselves are unstable as shown in Fig. 6f.
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FIG. 6. Potential energy distribution of a local spring system.
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3. NUMERICAL METHOD

3.1. Shallow Water Equations and Numerical Scheme

The shallow water equations not only are suitable for the performance test of a grid
system but also are a first step in global three-dimensional general circulation models of both
atmosphere and ocean, because they contain fundamental phenomena in the meteorological
field, e.g., the gravity wave and the Rossby wave.

The shallow water equations on the spherical geometry are described in the vector in-
varient form as

∂v
∂t

+ (ξζ + f )k̂ × v = −∇
(

gh + ξ
v · v

2

)
, (10)

∂h

∂t
+ ∇ · ((h̄ + ξh′)v) = 0, (11)

where v denotes the velocity vector that lies on the tangential plane on the sphere; h and h̄
denote the surface height and the mean fluid depth, respectively; h′ is the difference of the
surface height from h̄; t is time; ∇ is the gradient operator; k̂ is the unit vector in the radial
direction; f and g are the Coriolis parameter and the gravitational acceleration; ζ denotes
the vertical vorticity defined as

ζ = k̂ · (∇ × v). (12)

We introduce the nonlinear flag ξ , which equals 1 for the nonlinear system and 0 for the
linear system.

The gradient operator in Eq. (10), the divergence operator in Eq. (11), and the curl
operator in Eq. (12) are discretized by the finite volume method. The discretization of these
operators is the same as that in our previous paper [19]. Here, we review them for the sake
of discussion. If a set of vectors u is given at all the vertices of triangles Pi in Fig. 1, vectors
u at the vertices of control volume Gi are interpolated as

u(Gi ) � αu(P0) + βu(Pi ) + γ u
(

P1+mod(i,6)

)
α + β + γ

, (13)

where α, β, and γ are the areas of Gi Pi P1+mod(i,6), Gi P1+mod(i,6) P0, and Gi P0 Pi , respec-
tively. The number 6 is replaced with 5 in the case of pentagonal control volumes. The
divergence and curl operators are calculated from the Gauss theorem as

∇ · u(P0) � 1

A(P0)

6∑
i=1

bi
u(Gi ) + u

(
G1+mod(i,6)

)
2

· ni , (14)

k̂ · ∇ × u(P0) � 1

A(P0)

6∑
i=1

bi
u(Gi ) + u

(
G1+mod(i,6)

)
2

· mi , (15)

where bi , ni , and mi denote the geodesic arc length of Gi G1+mod(i,6), the outward unit vector
normal to this arc at the midpoint of Gi G1+mod(i,6), and the counter clockwise unit vector
parallel to this arc at the midpoint; A(P0) is the area of control volume at the point P0.
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The gradient operator to an arbitrary variable q is calculated as

∇q(P0) � 1

A(P0)

6∑
i=1

bi
q(Gi ) + q

(
G1+mod(i,6)

)
2

ni − q0

A(P0)

6∑
i=1

bi ni , (16)

where q(Gi ) is interpolated in a way similar to Eq. (13). The second term of Eq. (16) is the
correction term. If this term is omitted, the gradient vector of a homogeneous field does not
vanish because of curvature of the spherical surface.

The values of R.H.S. in Eqs. (14)–(16) represent the average values over the control
volumes, while the values of L.H.S represent the exact values at the grid point P0. It is proved
that only when the grid points are located at the gravitational centers of control volumes
do the differences of R.H.S. and L.H.S. have magnitudes of O(�d2), where �d denotes
a typical grid interval [19]. Namely, the combination of our spatial discretization and the
gravitational-centered relocation gives the second-order accuracy to numerical differential
operators.

All the prognostic equations (10) and (11) are explicitly integrated in time. The temporal
scheme is the third-order Runge–Kutta method. Arrangement of the grid system can be
independently chosen from the rotational axis of the earth. In this study, we set the rotational
axis of the earth to penetrate the spherical surface at two of the opposite vertices of the
original icosahedron. In all the simulations, we use glevel-5 grid system (approximately
2◦ × 2◦ grids) and set the time interval as �t = 360 [s].

3.2. Eigenmodes in the Error Field

Before we investigate the numerical accuracy of different grid systems, we should review
fundamental behaviors of errors owing to the discretization. Test case 2 in the standard test
suite proposed by Williamson et al. [20] is suitable for this purpose. This test case is used
to investigate temporal evolution of the numerical errors of the initial state that is given by
an analytic steady state in the geostrophic equilibrium. Although the original test case 2 is
only for the nonlinear system, we extend this test case also to the linear system. The initial
condition of the velocity field represents a solid body rotation and the height field is in the
geostrophic balance,

ṽe = îu0 cos φ, (17)

gh̃e = gh0 −
(

a�u0 + ξ
u2

0

2

)
sin2 φ, (18)

where the tilde (∼) on v and h means the balance state and subscript e represents the exact
solution in the analytic form; î and � denote the longitudinal unit vector and the angular
velocity of the earth, respectively; u0 and h0 are the velocity at the equator and the reference
height. In this paper, these values are the same as those of Williamson et al. [20]; that is,
a = 6.37122 × 106[m], � = 7.292 × 10−5[/s], g = 9.80616[m/s2], u0 = 2πa/12[days], and
gh0 = 2.94 × 104[m2/s2].

Although Eqs. (17) and (18) represent a balance state in the continuous system of Eqs. (10)
and (11), these equations do not represent a balance state in the discrete system. Let the
spatially discretized equations in the linear system (ξ = 0) be described as

∂

∂t
vd + f k̂ × vd = −∇d(ghd), (19)
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∂

∂t
hd + h̄∇d · vd = 0, (20)

where the subscript d represents the discretization. We may have a balanced field in the
discrete system near Eqs. (17) and (18),

f k̂ × ṽd = −∇d(gh̃d), (21)

∇d · ṽd = 0, (22)

where ṽd and h̃d are the velocity and the surface height of the balance state in the discrete
system. It should be noted that the existence of the discrete equation set (21) and (22)
is not assured. In addition, the balance field of the discrete system may not be uniquely
determined. We define the balance state of the discrete system by a temporally averaged
field of the numerically evolving solution of Eqs. (19) and (20). Substituting Eqs. (21) and
(22) from Eqs. (19) and (20), we can obtain the governing equations of the difference field
from the balance state in the discrete system as

∂

∂t
δvd + f k̂ × δvd = −∇d(gδhd), (23)

∂

∂t
δhd + h̄∇d · δvd = 0, (24)

where δvd = vd − ṽd and δhd = hd − h̃d . If we use ṽd and h̃d in Eqs. (21) and (22) as an
initial condition for Eqs. (19) and (20), δvd and δhd are always zero during the temporal
integration of Eqs. (23) and (24). However, if we use ṽe and h̃e in Eqs. (17) and (18) as an
initial condition for Eqs. (19) and (20), δvd and δhd temporally evolve. We can expect that
δvd and δhd are governed by the same dynamics as the original linear equations. Thus, they
may behave as a combination of the eigenmodes, that is, gravity wave modes and Rossby
wave modes.

Theoretically, the eigenmodes in the linear shallow water are expressed as the Hough
vector harmonics [21, 22]. Any eigenmode might be spuriously generated owing to the
discretization error. We may decompose (δvd and δhd ) by the Hough vector harmonics. In
this paper, we denote each eigenmode by the error mode. The amplitude of the error modes
can be used as an index of the numerical accuracy of the discretization. The Hough vector
harmonics are represented as

Hm
l,α(λ, φ) =

∞∑
n=m

(
i Am

l,α,n ym
n,1 + Bm

l,α,n ym
n,2 − Cm

l,α,n ym
n,3

)

ym
n,1 =




im
cos φ

Pm
n

d Pm
n

dφ

0


 exp(imλ)√

n(n + 1)
, ym

n,2 =




− d Pm
n

dφ

im
cos φ

Pm
n

0


 exp(imλ)√

n(n + 1)
, (25)

ym
n,3 =


 0

0
Pm

n


exp(imλ),

where indices m and l represent the zonal mode and the meridional normal mode, respec-
tively. Index α denotes the kind of mode; an eastward or a westward gravity wave for a
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α = 1 or 2, and a Rossby wave mode for α = 3. ym
n, j ( j = 1 ∼ 3) are the spherical vector

harmonics. Pm
n are the normalized associated Legendre functions. The first and second

components of Hm
l,α(λ, φ) are the zonal velocity and meridional velocity scaled by

√
gh̄,

while the third component is the height scaled by h̄. As shown in Eq. (25), the Hough har-
monics are expanded as the infinite series of the spherical vector harmonics. The expansion
coefficients (Am

l,α,n, Bm
l,α,n, Cm

l,α,n) accompanied with the eigenfrequency can be calculated
by the method of Swaztrauber and Kasahara [22]. Since all of the Hough vector harmon-
ics are orthogonal, the amplitude of Hm

l,α in the error field (δvd and δhd ) can be calcu-
lated as

Sm
l,α = 2 × 1

2π

∫ 2π

0

∫ π/2

−π/2

(
δvd · î√

gh̄
,
δvd · ĵ√

gh̄
,
δhd

h̄

)
· (Hm

l,α

)∗
cos φ dφ dλ, (26)

where î and ĵ are the longitudinal and latitudinal unit vectors. (Hm
l,α)∗ is the conjugate

transpose of Hm
l,α .

4. NUMERICAL EXPERIMENTS

In this section, we solve the shallow water equations on the sphere to compare the
numerical accuracy between the different grid systems obtained in Section 2.

4.1. Evolution of the Initial Error

4.1.1. Gravity Wave Error

We first perform the irrotational case of the linear system, so that (ξ, �) = (0, 0). The
grid system used is the SPR grid with β = 0.0. The reason we choose β = 0.0 is that this
grid system possesses enhanced characteristics of the spring grid modification as shown in
Fig. 4, and we can expect to clearly detect error modes due to the grid modification by the
spring dynamics. Figure 7 shows the temporal variations of l2 norms for h and v, which are
defined by

l2(x) = {I [(x − xe)
2]}1/2{

I
[
x2

e

]}1/2 , (27)

where x represents either h or v; I denotes the globally averaging operator; xe denotes
the exact value of x . We can find from Fig. 7 that l2 norms for h and v have periodic-
ity of 1.8 × 104 and 3.6 × 104 s, respectively. In this case, all the frequencies of Rossby
wave modes are zero because � = 0, while gravity wave modes have nonzero frequencies.
Thus, the periodicity of l2 norms in Fig. 7 is caused by a small amplitude of gravity wave
superimposed on the balance state in the discrete system.

To extract the error modes, we construct the error fields (δvd and δhd ) by the follow-
ing method. We can regard the temporally averaged field during 0 < t < 1.8 × 105 s as a
balanced state in the discrete system. Figure 8a shows the difference height between the
temporally averaged field h̃d and the exact solution h̃e. We produce temporal series of
anomaly by subtracting the balance state from each of snapshots and regard them as the
error fields (δvd and δhd ). Figures 8b–8j show the temporal series of anomaly for height
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FIG. 7. The temporal variations of l2 norms for the irrotational linear system using the SPR grid (β = 0.0)
with glevel-5.

from t = 0 to t = 3.6 × 104 s. We can find from Fig. 8 that there is a standing wave with
zonal wavenumber 5 that is asymmetric against the equator. The pattern of this error for
δhd is similar to the spherical harmonics Y 5

6 .
We analyze the error fields focusing on the wavenumber 5 components by the Hough

harmonics deceomposition. Table I shows the periods of gravity wave modes for l = 0–5 with
respect to m = 5 and their amplitudes in the error fields calculated by Eq. (26). For gravity
wave modes, an odd value of l represents an asymmetric mode against the equator while
an even value of l represents a symmetric mode against the equator. As shown in Table I,
amplitudes of l = 0, 2, and 4 are extremely small compared with those of l = 1, 3, and 5.
This fact indicates that the error fields are asymmetric against the equator, corresponding
to Fig. 8. Among the asymmetric modes, the mode of l = 1 is most dominant. The period
of this mode is in good agreement with the period of l2(v). In addition, the components
of eastward gravity waves (α = 1) are comparable with those of westward gravity waves
(α = 2). This fact corresponds to the structure of standing wave. Thus, we can conclude that
the error mode of H5

1,α=[1,2] is the most dominant in this case.
Second, we perform the temporal integration for the case with the rotation of the earth

using the linear system. The grid system used is the same as that used in the previous case

TABLE I

Periods and Amplitudes of Gravity Wave Modes for m = 5 (the Irrotational Case)

α = 1 α = 2

Period (s) Amplitude Period (s) Amplitude

l = 0 4.26 × 104 1.26(±0.38) × 10−13 −4.26 × 104 1.26(±0.38) × 10−13

l = 1 3.60 × 104 5.62(±0.18) × 10−6 −3.60 × 104 5.62(±0.18) × 10−6

l = 2 3.12 × 104 1.29(±0.46) × 10−13 −3.12 × 104 1.29(±0.45) × 10−13

l = 3 2.75 × 104 8.80(±3.89) × 10−10 −2.75 × 104 8.80(±3.89) × 10−10

l = 4 2.46 × 104 6.56(±3.09) × 10−14 −2.46 × 104 6.54(±3.09) × 10−14

l = 5 2.23 × 104 8.27(±0.24) × 10−7 −2.23 × 104 8.27(±0.24) × 10−7

Note. Positive and negative periods represent eastward and westward propagations, respectively. The values in
parentheses are the standard deviations during the sampling term.
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FIG. 8. The temporally averaged field of height error h̃d − h̃e (a) and the temporal series of anomaly δhd (b–j)
for the irrotational linear case, using the SPR grid (β = 0.0) with glevel-5. T = 3.6 × 104 [s].
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FIG. 10. The temporally averaged field of height error h̃d − h̃e (a) and the temporal series of anomaly δhd

(b–j) for the rotational linear case, using the SPR grid (β = 0.0) with glevel-5. T = 6 × 104 [s].
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FIG. 9. The temporal variations of l2 norms for the rotational linear system, using the SPR grid (β = 0.0) with
glevel-5.

(β = 0.0). Figure 9 shows the temporal variations of l2 norms for h and v. Different from
the irrotational case, the dominant period of fluctuation of l2(h) is the same as that of l2(v).
Although the periodicity is not as clear as the irrotational case, the period T can be estimated
as 6 × 104 s from Fig. 9. Figure 10 shows the temporally averaged field (h̃d − h̃e) from t = 0
to t = 3 × 105 s and the temporal series of anomaly from h̃d , which is produced by the same
method used in the irrotational case. The dominant wave in this case is a standing wave
symmetirc against the equator with meridional node 2 and zonal wavenumber 0. The pattern
of this error for δhd is similar to the spherical harmonics Y 0

2 . We can also see that there is a
wave with zonal wavenumber 5. However, it seems to be weaker than the wave with zonal
wavenumber 0.

Table IIa shows the periods of gravity wave modes for m = 0 and their amplitudes in the
error fields. The absolute values of two periods of gravity waves (α = 1, 2) for each l are the

TABLE II

Periods and Amplitudes of Gravity Wave Modes for m = 0 (the Rotational Case)

α = 1 α = 2

Period (s) Amplitude Period (s) Amplitude

(a) m = 0
l = 1 9.77 × 104 2.65(±1.72) × 10−14 −9.77 × 104 2.65(±1.72) × 10−14

l = 2 5.89 × 104 2.78(±0.14) × 10−4 −5.89 × 104 2.78(±0.14) × 10−4

l = 3 4.67 × 104 2.55(±1.66) × 10−14 −4.67 × 104 2.55(±1.66) × 10−14

l = 4 3.96 × 104 8.38(±1.20) × 10−5 −3.96 × 104 8.38(±1.20) × 10−5

l = 5 3.48 × 104 2.15(±1.35) × 10−14 −3.48 × 104 2.15(±1.35) × 10−14

l = 6 3.11 × 104 9.25(±5.21) × 10−6 −3.11 × 104 9.25(±5.21) × 10−6

(b) m = 5
l = 0 4.49 × 104 5.52(±2.81) × 10−13 −3.80 × 104 2.60(±1.15) × 10−12

l = 1 3.58 × 104 1.31(±0.038) × 10−5 −3.22 × 104 6.10(±0.53) × 10−6

l = 2 3.03 × 104 3.18(±1.45) × 10−12 −2.83 × 104 9.03(±4.07) × 10−13

l = 3 2.65 × 104 5.02(±0.37) × 10−6 −2.53 × 104 5.19(±0.32) × 10−6

l = 4 2.37 × 104 1.24(±0.60) × 10−12 −2.29 × 104 8.54(±3.97) × 10−13

l = 5 2.15 × 104 1.28(±0.26) × 10−6 −2.09 × 104 9.25(±5.21) × 10−6
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same but their signs are opposite. Since there is no zonal structure for m = 0, the amplitudes
of eastward and westward gravity waves are also the same. As shown in Table IIa, the
amplitudes of even ls are much larger than those of odd ls. The mode l = 2 is the most
dominant mode for m = 0. In addition, the period of the mode l = 2 is closest to the period
of fluctuation of l2 norms (6 × 104 [s]). Table IIb shows the periods of gravity wave modes
for m = 5 and their amplitudes in the error fields. The mode of l = 1 and α = 1 is the most
dominant in the modes of m = 5. However, its amplitude is quite smaller than the dominant
mode for m = 0. Thus, we can conclude that the error field in the rotational case is mostly
explained by the gravity wave mode H0

2,α=[1,2].

4.1.2. Rossby Wave Error

We can expect the existence of Rossby wave modes owing to the initial error. To detect
Rossby wave errors clearly, we introduce the divergence damping term into Eq. (10) as

L.H.S of (10) = R.H.S of (10) + ν∇(∇ · v), (28)

where ν is the damping coefficient.
Usually, the divergence damping term is introduced in the nonhydrostatic equations to

eliminate acoustic waves, which are believed to be less important for the meteorological
problems [23]. Since the dynamical mechanics of the gravity wave in the shallow water
equations corresponds to that of the acoustic wave in the nonhydrostatic equations, we can
effectively filter out the gravity wave mode by the divergence damping term. Although the
gravity waves as well as the Rossby waves are important, in the shallow water equations,
we dare to use this term only for the current purpose.

Figure 11 shows the temporal variation of l2(h) in a long-time simulation of the rotational
and linear system with divergence damping. The damping coefficient is set as ν = 2.5 ×
107 m2/s. The fluctuation of l2(h) owing to the gravity wave error of H0

2,α=[1,2] is effectively
eliminated by t = 2.0 × 106 s. However, another periodicity, which is much longer than that
of the gravity wave mode, appears. We can estimate this period T as 5.4 × 105 s. Figure 12
shows the field analysis of height error by the same method as in Figs. 8 and 10. We can find
from the temporal series of anomaly (Figs. 12b–12j) that the error distribution is asymmetric

FIG. 11. Temporal variation of l2(h) for the rotational linear system with the divergence damping, using the
SPR grid (β = 0.0) with glevel-5.



326 TOMITA, SATOH, AND GOTO

FIG. 12. The temporally averaged field of height error h̃d − h̃e (a) and the temporal series of anomaly δhd

(b–j) for the rotational linear case with the divergence damping, using the SPR grid (β = 0.0) with glevel-5.
T = 5.4 × 105 [s].
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TABLE III

Periods and Amplitudes of Rossby Wave Modes

for m = 5 (the Rotational Case)

α = 3

Period (s) Amplitude

l = 0 −2.70 × 105 3.14(±0.09) × 10−5

l = 1 −4.08 × 105 1.21(±0.26) × 10−12

l = 2 −5.51 × 105 5.94(±0.21) × 10−5

l = 3 −7.04 × 105 2.91(±1.13) × 10−13

l = 4 −8.70 × 105 1.15(±0.23) × 10−5

l = 5 −10.5 × 105 2.23(±0.95) × 10−13

against the equator and with zonal wavenumber 5. Furthermore, the pattern is westward
traveling. As shown in Fig. 12a, the temporal averaged field also has a wave with zonal
wavenumber 5.

The Rossby wave mode in the linear shallow water equations is expressed as the Hough
vector harmonics with α = 3 in Eq. (25). Table III shows the periods of the Rossby wave
modes for m = 5 and amplitudes in the error fields. For the Rossby wave modes, an odd value
of l represents a symmetric mode against the equator, while an even value of l represents an
asymmetric mode against the equator. (Note that it is contrary to the gravity wave modes.)
From Table III, we may say that the mode of l = 2 is the primary mode and its period is
closest to the period of fluctuation of l2 norm (5.4 × 105 s). The amplitudes of l = 0 and 4
are not negligible, but smaller than that of l = 2. Thus, we may say that the error field in
this case is almost explained by the Rossby wave mode of H5

2,α=3.

4.2. Comparison of Numerical Accuracy of Spring Grids

In the previous section, we detected the gravity wave error and the Rossby wave error
in the linear system. The purpose of this section is to compare the numerical accuracy of
the SPR grid systems. We perform a long-time simulation of test case 2 in the nonlinear
system (ξ = 1) using the SPR grid systems and varying the value of β. Although the total
simulation time is 5 days in the original test case 2 [20], the total simulation time in this
study is extended to 60 days in order to detect errors with longer periods. For numerical
stability, we add the sixth-order hyperviscosity term to R.H.S. of Eq. (10) as

L.H.S of (10) = R.H.S of (10) + µ∇6v, (29)

whereµ is the viscosity coefficient. In this case, we set the coefficient asµ=2.14×1026 m6/s
so that the e-folding time for waves with two-grid-scale wavelengths is about 30 min.

Figure 13 shows the temporal variations of l2(h) for β = 0.0, 0.6, and 1.2. There exist two
fluctuations for the case β = 0.0 as shown in Fig. 13a. One is the fluctuation with a small
period estimated as 6 × 104 s and the other is the fluctuation with a large period estimated
as 2 × 106 s � 22 days. The fluctuation with the small period is owing to the gravity wave
mode of H0

2,α=[1,2] and can be seen also for the cases β = 0.6 and 1.2 (Figs. 13b and 13c).
These results show that the intensity of the gravity wave error is not sensitive to β.
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FIG. 13. The temporal variations of l2(h) for the nonlinear system.

The fluctuation with the large period corresponds to the Rossby wave mode of H5
2,α=3 in

the linear system. However, the period due to this Rossby wave mode is much larger than
that of the Rossby wave mode H5

2,α=3 in the linear system. The reason that the period in the
nonlinear system becomes larger can be explained as follows. The Rossby wave mode is
westward propagating, while the wind due to solid rotation field flows eastward. If c and u
denote the phase velocity of the Rossby wave against the medium and the wind velocity,
respectively, the westward propagation velocity ceff against the surface can be written as
ceff = c − u. Thus, the westward propagation velocity is reduced by the wind velocity, so
that the period becomes longer. Actually, by the same analysis of the height error as used
in the previous subsection, we detected the westward propagation of Rossby wave with a
slow speed and obtained the same spatial pattern as shown in Fig. 12.

As shown in Fig. 13, the amplitude with the large period is much reduced if β increases.
The amplitude in the case β = 1.2 is the smallest in three cases. This means that the balance
state in the discrete system is much closer to that in the continuous system at the higher β.

To check the performance in a more realistic flow, we also performed test case 5 (zonal
flow over an isolated mountain) [20] using the SPR grid systems varying the value of β. In
this problem, the gravity waves generated by the initial impact propagate over the sphere
during the simulation, so that the dominant error is generated not by the Rossby wave but
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by the gravity wave. Consequently, all of the SPR grids have the almost same numerical
accuracy, because the magnitude of error generated by the gravity wave is not sensitive to β.

5. SUMMARY AND DISCUSSION

In Section 2, we described in detail the grid generation method using spring dynamics,
and we generated a set of grid systems by varying the tuning parameter β. The ratio of
the maximum grid interval to the minimum one defined by lmax/ lmin becomes smaller and
closer to unit as β increases. It is found that the grid hardly converge to any stationary state
if β exceeds a critical value around 1.2. We can explain this phenomenon by consideration
of the stability of an equilibrium state of a local spring system. If β = 1.2, the obtained
grid is most homogeneous with lmax/ lmin = 1.24. This value is smaller than the convergence
level(1.34) in the standard grid system. In addition, the dependency of lmax/ lmin on glevel
is minimum at β = 1.2, that is, lmax/ lmin does not vary if the glevel increases. Thus, from
the viewpoint of computational efficiency, the SPR grid with β = 1.2 is the best choice.

In Section 4.1, we found that there are two dominant error patterns associated with
discretization error in the initial field of the zonal geostrophic problem. One is similar to
the spherical harmonics Y 5

6 . The other is similar to Y 0
2 . These distributions generate error

modes, behaviors of which are governed by the original shallow water equations.
The first error Y 5

6 corresponds to the gravity wave mode of the Hough vector harmonics
H5

1,α=[1,2] and the Rossby wave mode H5
2,α=3. This error comes from the icosahedral grid

structure, because the grid structure used in this study also has a 5-fold symmetry around the
rotational axis and is asymmetric against the equator. Thus, these error modes are peculiar
to the icosahedral grid structure.

On the other hand, the second error pattern Y 0
2 corresponds to the gravity wave of

H0
2,α=[1,2]. Although the Rossby wave mode due to this error pattern also exists theoret-

ically [22], it cannot be detected because this pattern has no zonal structure. We may say
that the error mode of the gravity wave H0

2,α=[1,2] is free from the symmetry of the grid
structure around the rotational axis, because the zonal wavenumber of this mode is zero.
Other studies using the icosahedral grid system also show similar fluctuations with this
period in l2 norm for h [9, 12]. Even in the spectral model, there is a fluctuation with the
same period (see figure 4.1 in [24]). We can attribute the source of this error to the initial
profile; in Eqs. (17) and (18), the meridional distribution of the balance field has a large
value at the equator and monotonically decreases toward the poles. The difference in the
balance state of the continuous system and that of the discrete system is produced mainly by
this meridional distribution. Thus, this error is not peculiar to the icosahedral grid configu-
ration.

Based on the analysis of the evolution of the initial error, we can discuss which value of β

produces the best SPR grid in terms of the numerical accuracy. As shown in Section 4.2, the
magnitude of the gravity wave error is independent of β, while the magnitude of the Rossby
wave error becomes smaller as β increases. The Rossby wave error is mostly reduced for the
SPR grid with β = 1.2, which is most homogeneous in our grid systems. The Rossby waves
as well as the gravity waves are fundamentally important in large-scale dynamics, so that it
should be solved as accurately as possible. In this sense, it is desirable that the Rossby wave
error should be minimum. Therefore, we conclude that the SPR grid with β = 1.2 is the best
choice from the viewpoint of physical performance as well as computational efficiency.
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